Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(22): 15743-15754, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38746847

ABSTRACT

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

2.
J Magn Reson ; 361: 107662, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574458

ABSTRACT

The open-source console MaRCoS, which stands for "Magnetic Resonance Control System", combines hardware, firmware and software elements for integral control of Magnetic Resonance Imaging (MRI) scanners. Previous developments have focused on making the system robust and reliable, rather than on users, who have been somewhat overlooked. This work describes a Graphical User Interface (GUI) designed for intuitive control of MaRCoS, as well as compatibility with clinical environments. The GUI is based on an arrangement of tabs and a renewed Application Program Interface (API). Compared to the previous versions, the MaRGE package ("MaRCoS Graphical Environment") includes new functionalities such as the possibility to export images to standard DICOM formats, create and manage clinical protocols, or display and process image reconstructions, among other features conceived to simplify the operation of MRI scanners. All prototypes in our facilities are commanded by MaRCoS and operated with the new GUI. Here we report on its performance on an experimental 0.2 T scanner designed for hard-tissue, as well as a 72 mT portable scanner presently installed in the radiology department of a large hospital. The possibility to customize, adapt and streamline processes has substantially improved our workflows and overall experience.


Subject(s)
Software , User-Computer Interface , Computers , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted
4.
Sci Rep ; 13(1): 1662, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717649

ABSTRACT

Magnetic Resonance Imaging of hard biological tissues is very challenging due to small proton abundance and ultra-short [Formula: see text] decay times, especially at low magnetic fields, where sample magnetization is weak. While several pulse sequences, such as Ultra-short Echo Time (UTE), Zero Echo Time (ZTE) and SWeep Imaging with Fourier Transformation (SWIFT), have been developed to cope with ultra-short lived MR signals, only the latter two hold promise of imaging tissues with sub-millisecond [Formula: see text] times at low fields. All these sequences are intrinsically volumetric, thus 3D, because standard slice selection using a long soft radio-frequency pulse is incompatible with ultra-short lived signals. The exception is UTE, where double half pulses can perform slice selection, although at the cost of doubling the acquisition time. Here we demonstrate that spin-locking is a versatile and robust method for slice selection for ultra-short lived signals, and present three ways of combining this pulse sequence with ZTE imaging of the selected slice. With these tools, we demonstrate slice-selected 2D ex vivo imaging of the hardest tissues in the body at low field (260 mT) within clinically acceptable times.

5.
Sci Rep ; 12(1): 13147, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907975

ABSTRACT

Mobile medical imaging devices are invaluable for clinical diagnostic purposes both in and outside healthcare institutions. Among the various imaging modalities, only a few are readily portable. Magnetic resonance imaging (MRI), the gold standard for numerous healthcare conditions, does not traditionally belong to this group. Recently, low-field MRI technology companies have demonstrated the first decisive steps towards portability within medical facilities and vehicles. However, these scanners' weight and dimensions are incompatible with more demanding use cases such as in remote and developing regions, sports facilities and events, medical and military camps, or home healthcare. Here we present in vivo images taken with a light, small footprint, low-field extremity MRI scanner outside the controlled environment provided by medical facilities. To demonstrate the true portability of the system and benchmark its performance in various relevant scenarios, we have acquired images of a volunteer's knee in: (i) an MRI physics laboratory; (ii) an office room; (iii) outside a campus building, connected to a nearby power outlet; (iv) in open air, powered from a small fuel-based generator; and (v) at the volunteer's home. All images have been acquired within clinically viable times, and signal-to-noise ratios and tissue contrast suffice for 2D and 3D reconstructions with diagnostic value. Furthermore, the volunteer carries a fixation metallic implant screwed to the femur, which leads to strong artifacts in standard clinical systems but appears sharp in our low-field acquisitions. Altogether, this work opens a path towards highly accessible MRI under circumstances previously unrealistic.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Femur , Humans , Knee , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio
6.
Phys Med Biol ; 67(4)2022 02 18.
Article in English | MEDLINE | ID: mdl-35108685

ABSTRACT

Objective.The goal of this work is to extend previous peripheral nerve stimulation (PNS) studies to scenarios relevant to magnetic particle imaging (MPI) and low-field magnetic resonance imaging (MRI), where field dynamics can evolve at kilo-hertz frequencies.Approach.We have constructed an apparatus for PNS threshold determination on a subject's limb, capable of narrow and broad-band magnetic stimulation with pulse characteristic times down to 40µs.Main result.From a first set of measurements on 51 volunteers, we conclude that the PNS dependence on pulse frequency/rise-time is compatible with traditional stimulation models where nervous responses are characterized by a rheobase and a chronaxie. Additionally, we have extended pulse length studies to these fast timescales and confirm thresholds increase significantly as trains transition from tens to a few pulses. We also look at the influence of field spatial distribution on PNS effects, and find that thresholds are higher in an approximately linearly inhomogeneous field (relevant to MRI) than in a rather homogeneous distribution (as in MPI).Significance.PNS constrains the clinical performance of MRI and MPI systems. Extensive magneto-stimulation studies have been carried out recently in the field of MPI, where typical operation frequencies range from single to tens of kilo-hertz. However, PNS literature is scarce for MRI in this fast regime, relevant to small (low inductance) dedicated MRI setups, and where the resonant character of MPI coils prevents studies of broad-band stimulation pulses. This work advances in this direction.


Subject(s)
Diagnostic Imaging , Transcutaneous Electric Nerve Stimulation , Heart Rate , Humans , Radiography , Volunteers
7.
Sci Rep ; 10(1): 21470, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293593

ABSTRACT

Magnetic Resonance Imaging (MRI) of hard biological tissues is challenging due to the fleeting lifetime and low strength of their response to resonant stimuli, especially at low magnetic fields. Consequently, the impact of MRI on some medical applications, such as dentistry, continues to be limited. Here, we present three-dimensional reconstructions of ex-vivo human teeth, as well as a rabbit head and part of a cow femur, all obtained at a field strength of 260 mT. These images are the first featuring soft and hard tissues simultaneously at sub-Tesla fields, and they have been acquired in a home-made, special-purpose, pre-medical MRI scanner designed with the goal of demonstrating dental imaging at low field settings. We encode spatial information with two pulse sequences: Pointwise-Encoding Time reduction with Radial Acquisition and a new sequence we have called Double Radial Non-Stop Spin Echo, which we find to perform better than the former. For image reconstruction we employ Algebraic Reconstruction Techniques (ART) as well as standard Fourier methods. An analysis of the resulting images shows that ART reconstructions exhibit a higher signal-to-noise ratio with a more homogeneous noise distribution.


Subject(s)
Femur/diagnostic imaging , Head/diagnostic imaging , Magnetic Resonance Imaging/methods , Tooth/diagnostic imaging , Animals , Cattle , Equipment Design , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/instrumentation , Rabbits , Skull/diagnostic imaging
8.
Proc Natl Acad Sci U S A ; 116(41): 20446-20452, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548393

ABSTRACT

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , Humans , Models, Chemical , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction
9.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29901984

ABSTRACT

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Subject(s)
2-Propanol/metabolism , Enzyme Activation/drug effects , Escherichia coli/enzymology , Solvents/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Crystallography, X-Ray/methods , Escherichia coli/chemistry , Escherichia coli/metabolism , Kinetics , Molecular Dynamics Simulation , Protein Conformation/drug effects , Static Electricity , Tetrahydrofolate Dehydrogenase/chemistry , Viscosity , Water/metabolism
10.
J Phys Chem B ; 121(28): 6958-6968, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28636369

ABSTRACT

Structure-property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this article, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic-hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species and the neutral monomers. The favorable hydrophobic-hydrophobic interactions and the unfavorable hydrophobic-hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.

11.
J Phys Chem B ; 121(16): 4168-4173, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28398063

ABSTRACT

The calorimetric glass-transition temperature of water is 136 K, but extrapolation of thermodynamic and relaxation properties of water from ambient temperature to below its homogeneous nucleation temperature TH = 235 K predicts divergence at TS = 228 K. The "no-man's land" between the TH and glassy water crystallization temperature of 150 K, which is encountered on warming up from the vitrified state, precludes a straightforward reconciliation of the two incompatible temperature dependences of water properties, above 235 K and below 150 K. The addition of lithium chloride to water allows bypassing both TH and TS on cooling, resulting in the dynamics with no features except the calorimetric glass transition, still at 136 K. We show that lithium chloride prevents hydrogen-bonding network completion in water on cooling, as manifested, in particular, in changing microscopic diffusion mechanism of the water molecules. Thus thermodynamic and relaxation peculiarities exhibited by pure water on cooling to its glass transition, such as the existence of the TH and TS, must be associated specifically with the hydrogen-bonding network.

12.
Phys Chem Chem Phys ; 18(41): 28819-28828, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27722503

ABSTRACT

Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. We probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Baaq2+ is 208 ps and SO4aq2- is 5.8 ps. This work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.

13.
J Chem Theory Comput ; 12(1): 9-17, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26616475

ABSTRACT

Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulation due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. Also, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.

14.
J Chem Phys ; 142(8): 084903, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25725753

ABSTRACT

Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. The self-assembly of charged sites and counterions shows structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Overall, the slow structural decay of counterions in the strongly correlated ionomer system closely resembles transport properties of semi-flexible polymers.


Subject(s)
Freezing , Polymers/chemistry , Molecular Dynamics Simulation , Static Electricity
15.
J Phys Chem B ; 115(28): 8925-36, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21608980

ABSTRACT

Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This study reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf). Computational modeling allows detailed investigations of protein motions as a function of temperature, and neutron scattering experiments are used to compare to computational results. Just above the dynamical transition temperature which marks the onset of significant anharmonic motions of the protein, the computational simulations show both a significant reorientation of the average electrostatic force experienced by the coordinated Fe(3+) ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated and dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of P. furiosus, simulations show that three anharmonic modes including motions of two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe(3+) ion. The motions of these residues undergo displacements which may facilitate solvent access to the ion.


Subject(s)
Rubredoxins/chemistry , Computer Simulation , Models, Molecular , Molecular Dynamics Simulation , Oxidation-Reduction , Static Electricity
16.
Proc IEEE Int Conf Data Min ; : 1062-1067, 2011 Dec.
Article in English | MEDLINE | ID: mdl-25311546

ABSTRACT

A critical open problem in ab initio protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function.

17.
Proteins ; 69 Suppl 8: 90-7, 2007.
Article in English | MEDLINE | ID: mdl-17705276

ABSTRACT

An improved TASSER (Threading/ASSEmbly/Refinement) methodology is applied to predict the tertiary structure for all CASP7 targets. TASSER employs template identification by threading, followed by tertiary structure assembly by rearranging continuous template fragments, where conformational space is searched via Parallel Hyperbolic Monte Carlo sampling with an optimized force-field that includes knowledge-based statistical potentials and restraints derived from threading templates. The final models are selected by clustering structures from the low temperature replicas. Improvements in TASSER over CASP6 involve use of better templates from 3D-jury applied to three threading programs, PROSPECTOR_3, SP(3), and SPARKS, and a fragment comparison method for better model ranking. For targets with no reliable templates, a variant of TASSER (chunk-TASSER) is also applied with potentials and restraints extracted from ab initio folded supersecondary chunks of the target to build full-length models. For all 124 CASP targets/domains, the average root-mean-square-deviation (RMSD) from native and alignment coverage of the best initial threading models from 3D-jury are 6.2 A and 93%, respectively. Following TASSER reassembly, the average RMSD of the best model in the template aligned region decreases to 4.9 A and the average TM-score increases from 0.617 for the template to 0.678 for the best full-length model. Based on target difficulty, the average TM-scores of the final model to native are 0.904, 0.671, and 0.307 for high-accuracy template-based modeling, template-based modeling, and free modeling targets/domains, respectively. For the more difficult targets, TASSER with modest human intervention performed better in comparison to its server counterpart, MetaTASSER, which used a limited time simulation.


Subject(s)
Computational Biology/methods , Protein Structure, Tertiary , Computer Simulation , Models, Molecular , Protein Folding , Proteins/chemistry
18.
Proteins ; 68(1): 48-56, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17444524

ABSTRACT

A significant number of protein sequences in a given proteome have no obvious evolutionarily related protein in the database of solved protein structures, the PDB. Under these conditions, ab initio or template-free modeling methods are the sole means of predicting protein structure. To assess its expected performance on proteomes, the TASSER structure prediction algorithm is benchmarked in the ab initio limit on a representative set of 1129 nonhomologous sequences ranging from 40 to 200 residues that cover the PDB at 30% sequence identity and which adopt alpha, alpha + beta, and beta secondary structures. For sequences in the 40-100 (100-200) residue range, as assessed by their root mean square deviation from native, RMSD, the best of the top five ranked models of TASSER has a global fold that is significantly close to the native structure for 25% (16%) of the sequences, and with a correct identification of the structure of the protein core for 59% (36%). In the absence of a native structure, the structural similarity among the top five ranked models is a moderately reliable predictor of folding accuracy. If we classify the sequences according to their secondary structure content, then 64% (36%) of alpha, 43% (24%) of alpha + beta, and 20% (12%) of beta sequences in the 40-100 (100-200) residue range have a significant TM-score (TM-score > or = 0.4). TASSER performs best on helical proteins because there are less secondary structural elements to arrange in a helical protein than in a beta protein of equal length, since the average length of a helix is longer than that of a strand. In addition, helical proteins have shorter loops and dangling tails. If we exclude these flexible fragments, then TASSER has similar accuracy for sequences containing the same number of secondary structural elements, irrespective of whether they are helices and/or strands. Thus, it is the effective configurational entropy of the protein that dictates the average likelihood of correctly arranging the secondary structure elements.


Subject(s)
Algorithms , Models, Molecular , Protein Conformation , Protein Folding , Proteins/chemistry , Proteomics/methods , Databases, Protein , Structural Homology, Protein
19.
Methods Enzymol ; 412: 314-38, 2006.
Article in English | MEDLINE | ID: mdl-17046666

ABSTRACT

Understanding the toxicity of amyloidogenic protein aggregates and designing therapeutic approaches require the knowledge of their structure at atomic resolution. Although solid-state NMR, X-ray diffraction, and other experimental techniques are capable of discerning the protein fibrillar structure, determining the structures of early aggregates, called oligomers, is a challenging experimental task. Computational studies by all-atom molecular dynamics, which provides a complete description of a protein in the solvent, are typically limited to study folding of smaller protein or aggregation of a small number of short protein fragments. We review an efficient ab initio computer simulation approach to protein folding and aggregation using discrete molecular dynamics (DMD) in combination with several coarse-grained protein models and implicit solvent. This approach involves different complexity levels in both the protein model and the interparticle interactions. Starting from the simplest protein model with minimal interactions, and gradually increasing its complexity, while guided by in vitro findings, we can systematically select the key features of the protein model and interactions that drive protein folding and aggregation. Because the method used in this DMD approach does not require any knowledge of the native or any other state of the protein, it can be applied to study degenerative disorders associated with protein misfolding and aberrant protein aggregation. The choice of the coarse-grained model depends on the complexity of the protein and specific questions to be addressed, which are mostly suggested by in vitro findings. Thus, we illustrate our approach on amyloid beta-protein (Abeta) associated with Alzheimer's disease (AD). Despite the simplifications introduced in the DMD approach, the predicted Abeta conformations are in agreement with existing experimental data. The in silico findings also provide further insights into the structure and dynamics of Abeta folding and oligomer formation that are amenable to in vitro testing.


Subject(s)
Amyloid beta-Peptides/chemistry , Computer Simulation , Protein Folding , Binding Sites , Hydrogen Bonding , In Vitro Techniques , Models, Chemical , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Secondary
20.
Acc Chem Res ; 39(9): 635-45, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16981680

ABSTRACT

Oligomeric, neurotoxic amyloid protein assemblies are thought to be causative agents in Alzheimer's and other neurodegenerative diseases. Development of oligomer-specific therapeutic agents requires a mechanistic understanding of the oligomerization process. This is a daunting task because amyloidogenic protein oligomers often are metastable and comprise structurally heterogeneous populations in equilibrium with monomers and fibrils. A single methodological approach cannot elucidate the entire protein assembly process. An integrated multidisciplinary program is required. We discuss here the synergistic application of in hydro, in vacuo, and in silico methods to the study of the amyloid beta-protein, the key pathogenetic agent in Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...